Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Clin Nutr ESPEN ; 48: 370-377, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35331516

RESUMO

INTRODUCTION: Critically ill patients in the Intensive Care Unit (ICU) should receive nutritional support matched to their metabolic needs as both under- and overfeeding energy has been shown to increase mortality. Critical illness can significantly affect metabolism. Consequently, resting energy expenditure (REE) can vary markedly during critical illness. Therefore, indirect calorimetry to estimate REE is recommended to determine energy requirements in individual ICU patients and to guide optimal nutritional support. Currently, the Quark metabolic monitor is considered the gold standard in our ICU, but novel mechanical support devices are also equipped with indirect calorimetry functionalities. This study aimed to evaluate the performance of a currently unevaluated device. METHODS: A cross-sectional analysis in mechanically ventilated patients was conducted in a mixed medical-surgical ICU. The primary outcome was a numerical and visual comparison of the performance of the Beacon indirect calorimeter to calculate REE compared to the Quark device using Bland Altman plots. Performance was evaluated using bias, precision, accuracy, and reliability. Secondary analysis included a comparison with REE estimated by predictive equations. RESULTS: Seventy-one measurements were obtained in 27 mechanically ventilated subjects. An underestimation by the Beacon device in calculated REE of -96.2 kcal/day (4.5%) was found. There was a bias towards higher VCO2 and lower VO2 values with Beacon as compared to Quark. The reliability of the Beacon was good, with an absolute intraclass correlation coefficient of 0.897 (95%CI 0.751-0.955; p = 0.000). There was a poor correlation (<0.40) between the separate indirect calorimetry devices and most predictive equations. Only the Faisy predictive equations had good reliability (ICC 0.687, p = 0.002). CONCLUSIONS: Beacon indirect calorimetry accurately determined REE in mechanically ventilated critically ill patients compared to the gold standard in our ICU (Quark indirect calorimeter), although confidence intervals were wide. There was low bias and good reliability. On the other hand, predictive equations performed poorly compared to both devices, underestimating the true metabolic needs of mechanically ventilated ICU patients.


Assuntos
Metabolismo Energético , Respiração Artificial , Calorimetria Indireta , Estudos Transversais , Humanos , Unidades de Terapia Intensiva , Reprodutibilidade dos Testes
2.
Anal Chim Acta ; 1150: 338223, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33583551

RESUMO

Humidity as a major issue affects the quantitative performance of ion mobility spectrometry (IMS) in field applications. According to the kinetic equations of ion-molecular reaction, the intensity ratio of the product ion peak (PIP) over the reactant ion peak (RIP) is proposed as a quantitative factor to correct real-time humidity variation. By coupling this method with a unidirectional anisole-assisted photoionization IMS, direct breath-by-breath measurement of intraoperative propofol was achieved for the first time, which provided more clinical information for studying the anesthetics pharmacokinetics. Although the signal intensities of the RIP and the propofol PIP both declined along with the increase of humidity, the intensity ratio of Propofol/(RIP + Propofol) kept almost constant in a wide relative humidity range of 0%-98%, enabling direct quantitation of exhaled propofol with varying humidity. Furthermore, interfering ion peaks resulted from the high concentration humidity and anesthetics in single exhalation were eliminated during the balanced anesthesia as the exhaled sample was diluted by the unidirectional gas flow scheme. As a demonstration, breath-by-breath variation profiles of propofol were obtained via monitoring end-tidal propofol concentration of intraoperative anesthetized patients (n = 7). The analyses were quantitative, corrected for humidity in real-time, without measuring the humidity content of each breath sample during operation, which show potential for the quantitative analysis of other high humidity samples.


Assuntos
Propofol , Anisóis , Testes Respiratórios , Expiração , Humanos , Umidade , Espectrometria de Mobilidade Iônica , Propofol/análise
3.
Physiol Rep ; 8(21): e14624, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33190418

RESUMO

Given all its systemic adaptive requirements, pregnancy shares several features with physical exercise. In this pilot study, we aimed to assess the physiological response to submaximal cardiopulmonary exercise testing (CPET) in early pregnancy. In 20 healthy, pregnant women (<13 weeks gestation) and 20 healthy, non-pregnant women, we performed a CPET with stationary cycling during a RAMP protocol until 70% of the estimated maximum heart rate (HR) of each participant. Hemodynamic and respiratory parameters were non-invasively monitored by impedance cardiography (PhysioFlow® ) and a breath-by-breath analyzer (OxyconTM ). To compare both groups, we used linear regression analysis, adjusted for age. We observed a similar response of stroke volume, cardiac output (CO) and HR to stationary cycling in pregnant and non-pregnant women, but a slightly lower 1-min recovery rate of CO (-3.9 [-5.5;-2.3] vs. -6.6 [-8.2;-5.1] L min-1  min-1 ; p = .058) and HR (-38 [-47; -28] vs. -53 [-62; -44] bpm/min; p = .065) in pregnant women. We also observed a larger increase in ventilation before the ventilatory threshold (+6.2 [5.4; 7.0] vs. +3.2 [2.4; 3.9] L min-1  min-1 ; p < .001), lower PET CO2 values at the ventilatory threshold (33 [31; 34] vs. 36 [34; 38] mmHg; p = .042) and a larger increase of breathing frequency after the ventilatory threshold (+4.6 [2.8; 6.4] vs. +0.6 [-1.1; 2.3] breaths min-1  min-1 ; p = .015) in pregnant women. In conclusion, we observed a slower hemodynamic recovery and an increased ventilatory response to exercise in early pregnancy.


Assuntos
Teste de Esforço/métodos , Exercício Físico/fisiologia , Gravidez/fisiologia , Adulto , Aptidão Cardiorrespiratória , Tolerância ao Exercício , Feminino , Humanos , Consumo de Oxigênio , Projetos Piloto , Ventilação Pulmonar
4.
Artigo em Inglês | MEDLINE | ID: mdl-33344948

RESUMO

Assessment of the oxygen and carbon dioxide content of expired air during exercise is critical for determining cardiorespiratory status. The purpose of this study was to compare the new portable metabolic analyzer PNOE with COSMED - Quark CPET, a previously validated stationary metabolic cart. Methods: A total of 22 subjects (17 male and 5 female) aged 32.3 ± 11.1 years took part in the study. Breath by breath gas exchange was measured by both devices during a four-stage incremental protocol on a cycle ergometer. On a separate day, 10 participants repeated the trial to assess the reliability of the PNOE metabolic cart. Results: Strong correlations were obtained in VO2 (r = 0.98, p < 0.001), VCO2 (r = 0.98, p < 0.001), VE (r = 0.98, p < 0.001), and RQ (r = 0.91, p < 0.001), between the two devices. Bland-Altman plots revealed a mean difference of 34.0 ± 118 ml/min and 36.4 ± 110 ml/min in VO2 and VCO2 analysis, respectively. There were no significant differences in VO2, VCO2, VE, or RQ between the two devices. Intraclass correlation coefficient was high between the two trials for VO2 (r = 0.98, p < 0.001), VCO2 (r = 0.98, p < 0.001), VE (r = 0.99, p < 0.001), and RQ (r = 0.93, p < 0.001). Conclusions: Our data indicate that the portable metabolic cart PNOE can accurately determine respiratory gases over a wide range of exercise intensities, in healthy individuals, in a controlled laboratory setting.

5.
Sens Actuators B Chem ; 195: 171-176, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24659857

RESUMO

To be able to detect carbon dioxide (CO2) with high accuracy and fast response time is critical for many health and environmental applications. We report on a pocket-sized CO2 sensor for real-time analysis of end-tidal CO2, and environmental CO2. The sensor shows fast and reversible response to CO2 over a wide concentration range, covering the needs of both environmental and health applications. It is also immune to the presence of various interfering gases in ambient or expired air. Furthermore, the sensor has been used for real-time breath analysis, and the results are in good agreement with those from a commercial CO2 detector.

6.
Rev. bras. eng. biomed ; 24(2): 131-137, ago. 2008. tab, graf
Artigo em Inglês | LILACS | ID: lil-576309

RESUMO

In this research we obtained samples of human respiratory flow, oxygen concentration and carbon dioxide concentration signals from 20 healthy subjects and evaluated the average power spectral density (PSD) of these signals. For each subject,the respiratory samples were acquired in four progressive levels of exercise in a cycle ergometer. Auto regressive moving average models were designed to represent the PSD found in each phase. An average PSD of the four levels was also calculated. Results have shown that the bandwidth of O2 concentration, CO2 concentration and flow signals was 8  Hz, 7 Hz, and 15  Hz, respectively, within the dynamic range of 50  dB. The PSD curves found can be used for optimal filter design for signal enhancing in fast on-line measurement of these signals.


Nesta pesquisa foram registradas amostras dos sinais respiratórios de fluxo, concentração de oxigênio e concentração de gás carbônico em 20 voluntários saudáveis. A densidade espectral de potência (DEP) média foi então calculada. Para cada voluntário, as amostras dos sinais foram registradas em quatro intensidades progressivas de esforço físico em uma bicicleta ergométrica. Para representar a DEP encontrada em cada fase foram ajustados modelos auto-regressivos de média móvel. Uma DEP média entre as quatro intensidades também é fornecida. Os resultados mostraram que as larguras de banda dos sinais de concentração de O2, concentração de CO2 e fluxo foram 8  Hz, 7  Hz e 15  Hz, respectivamente, dentro de uma faixa dinâmica de 50  dB. As curvas de DEP encontradas podem ser usadas em projetos de filtros ótimos para equalização destes sinais em medições em tempo real.


Assuntos
Humanos , Masculino , Feminino , Análise Espectral/métodos , Espirometria/métodos , Teste de Esforço , Testes de Função Respiratória/métodos , Dióxido de Carbono/análise , Fluxo Expiratório Forçado , Volume Expiratório Forçado , Gasometria/métodos , Curvas de Fluxo-Volume Expiratório Máximo , Mecânica Respiratória/fisiologia , Nível de Oxigênio/análise , Pico do Fluxo Expiratório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...